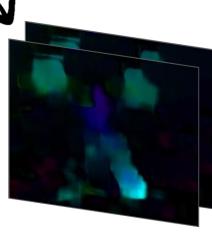


Problem

Temporal action detection (or localization)

The goal is to predict action intervals and their classes.



Introduction

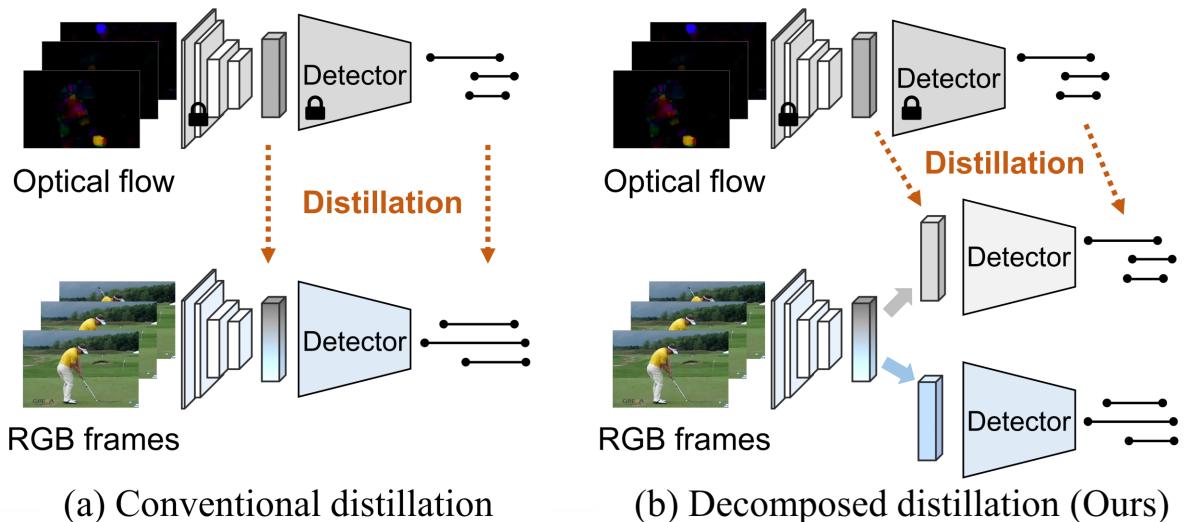
• To date, a variety of temporal action detection models have shown promising performance based on two-stream inputs.

RGB frames

Optical flow

• However, they all heavily rely on computationally expensive optical flow for performance, regardless of framework types.

Enomore	Mathad	Average mAP (%)						
Framework	Method	RGB+OF	RGB	Δ				
Anchor-based	G-TAD [74]	41.5	26.9	-14.6				
Anchor-free	AFSD [34]	52.4	43.3	-9.1				
	Actionformer [80]	62.2	55.5	-6.7				
DETR-like	TadTR [42]	56.7	46.0	-10.7				
Proposal-free	TAGS [47]	52.8	47.9	-4.9				

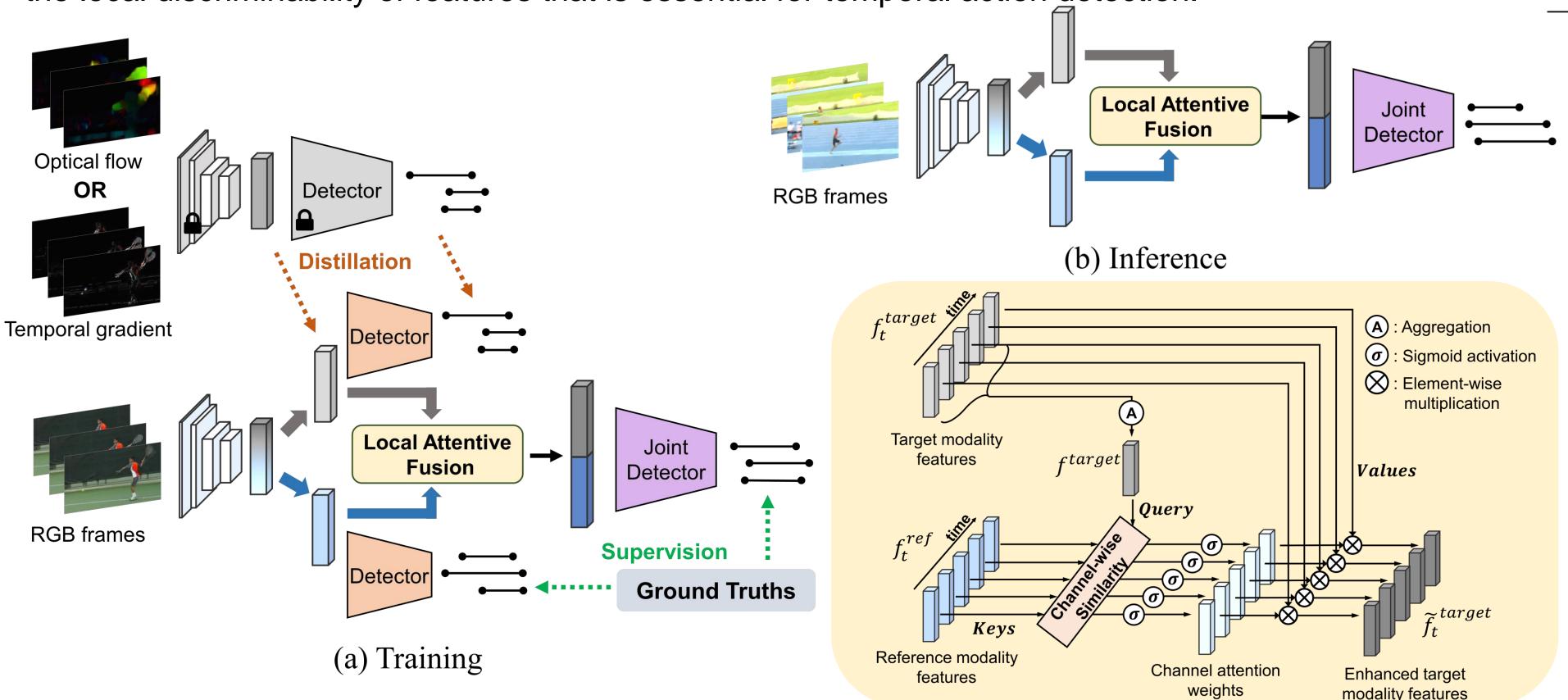

- How costly is optical flow? E.g., TV-L¹ takes 1.8 minutes to process a 1-min 224 \times 224 video of 30 fps on a GPU.
- To bypass the cost, we aim to build a strong RGB-based action detector for both efficient and accurate prediction with a novel cross-modal knowledge distillation framework.

Decomposed Cross-modal Distillation for RGB-based Temporal Action Detection

Minho Shim Pilhyeon Lee Taeoh Kim

Decomposed Cross-modal Distillation

Contrary to conventional distillation where multimodal information is entangled, the proposed decomposed distillation framework encourages the model to learn it in a decomposed way to exploit better multimodal complementarity.



(a) Conventional distillation

Architecture

Our model explicitly separates the motion and appearance features within a dual-branch pipeline where the two branches share the detection head but pursue conflicting training objectives.

The proposed **local attentive fusion** enables effective multimodal information fusion while sustaining the local discriminability of features that is essential for temporal action detection.

Dongyoon Wee Hyeran Byun

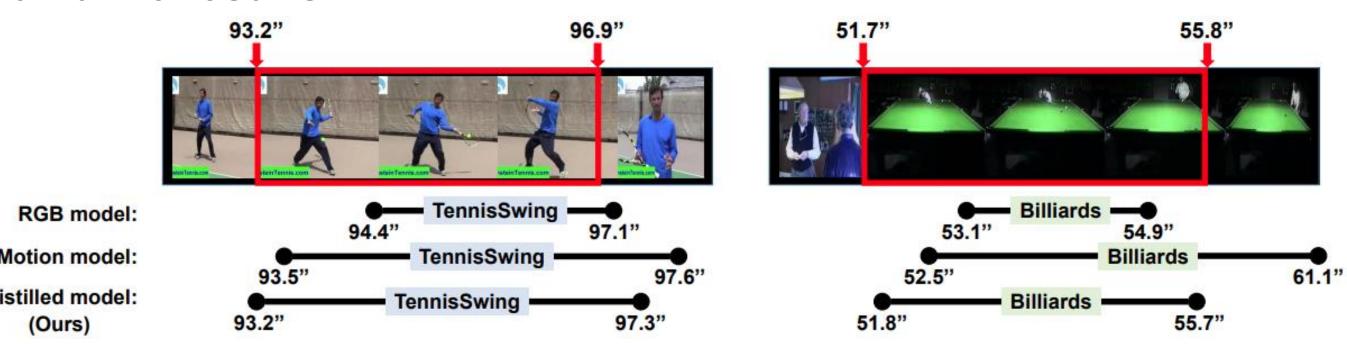
Experiments

Ablation studies

		1	 													
distil conven.	lation decomp.	local attn.	0.3	mA] 0.4	P@IoU 0.5	$ \begin{array}{c c} \text{IoU}(\%) \\ .5 & 0.6 & 0.7 \end{array} \text{AV} $		AVG	Fusion	0.3	0.4	0.5	0.6	0.7	AVG	
×	X	x	62.3	55.2	46.2	33.8	20.4	43.6	concat.	63.3	56.2	47.9	36.1	22.9	45.2	
 ✓ 			62.5	55.7	47.3	35.1	21.8	44.5	sum. self-attn.	62.6 63.8	56.1 56.3	47.5 46.7	36.1 34.2	23.0 21.9	45.1 44.6	
	1		63.3	56.2	47.9	36.1	22.9	45.2	cross-attn.	63.1	54.5	46.4	35.4	21.7	44.2	
	<i>✓</i>		64.4	58.0	49.0	37.5	24.1	46.6	diffattn. local attn. (Ours)	61.8 64.4	54.8 58.0	46.3 49.0	32.6 37.5	21.0 24.1	43.3 46.6	

Generalization tests

Backbone	Distill.	0.3	mAl 0.4	P@IoU 0.5	(%) 0.6	0.7	AVG			(]	ГG: ten	nporal	gradien	nt, OF:	Optical flow)	
TSM18 [35]	X TG	62.3	55.2 58.0	46.2 49.0	33.8 37.5	20.4 24.1	46.6 (+3.0)	Head	Distill.	0.3	mA 0.4	P@IoU 0.5	(%) 0.6	0.7	AVG	
	OF	65.3	59.5	50.9	39.6	25.5			×	51.4	44.7	36.0	26.4	16.8	35.1	
TSM50 [35]	X 65.0 59.2 50.0 38.2 25.0 47.5 50 [35] TG 68.1 61.8 52.4 41.7 27.5 50.3 (+2.8)	47.5 50.3 (+2.8)	G-TAD [74]	TG OF	54.8 55.3	48.9 49.4	38.1 39.2	28.0 30.6	18.1 19.7	37.6 (+2.5) 38.8 (+3.6)						
	OF	66.5	62.3	55.3	44.5	32.9	52.3 (+4.8)		×	62.8	56.7	47.5	37.3	25.5	46.0	
I3D [6]	X TG	53.8	47.0 51.4	38.6 42.5	30.0 32.9	19.9 22.1	37.9 41.3 (+3.4) 42.6 (+4.7)		TadTR [42]	TG OF	63.8 64.1	57.4 58.3	49.9 51.2	39.2 40.9	26.9 28.8	47.4 (+1.4) 48.7 (+2.7)
	OF	57.7	52.1	44.6	34.9	24.0		A	X TC	62.3	55.2	46.2	33.8	20.4	43.6	
Slowfast50 [15]	X TG OF	67.4 68.9 70.5	62.9 64.1 65.8	56.8 58.1 59.2	46.8 48.2 50.1	35.0 35.6 38.2	53.8 55.0 (+1.2) 56.8 (+3.0)	Actionformer [80]	TG OF	64.4 65.3	58.0 59.5	49.0 50.9	37.5 39.6	24.1 25.5	46.6 (+3.0) 48.2 (+4.6)	


State-of-the-art comparisons

Method	Venue	OF			THUN	10S'1 4			ActivityNet1.3				
			0.3	0.4	0.5	0.6	0.7	AVG	0.5	0.75	0.95	AVG	
CDC [55]	CVPR'17	X	40.1	29.4	23.3	13.1	7.9	22.8	45.30	26.00	0.20	23.80	
GTAN [44]	CVPR'19	X	57.8	47.2	38.8	-	-	-	52.61	34.14	8.91	34.31	
G-TAD* [74]	CVPR'20	X	52.5	45.9	37.6	28.5	19.1	36.7	49.22	34.55	4.74	33.17	
AFSD* [34]	CVPR'21	X	57.7	52.8	45.4	34.9	22.0	43.6	-	-	-	32.90	
TadTR* [42]	TIP'22	X	59.6	54.5	47.0	37.8	26.5	45.1	49.56	35.24	9.93	34.35	
E2E-TAD [40]	CVPR'22	X	69.4	64.3	56.0	46.4	34.9	54.2	50.47	35.99	10.83	35.10	
TAGS [†] [47]	ECCV'22	X	59.8	57.2	50.7	42.6	29.1	47.9	54.44	34.95	8.71	34.95	
Actionformer [†] [80]	ECCV'22	×	69.8	66.0	58.7	48.3	34.6	55.5	53.21	35.15	8.03	34.94	
Ours	-	×	70.5	65.8	59.2	50.1	38.2	56.8	53.73	35.87	8.61	35.58	

Qualitative results

Distilled mod

(Ours)

The proposed method significantly enhances the RGB-based action detectors, while being generalizable to various backbones and detection heads.