

Introduction

- Contrastive learning draws positive samples and pushes away negative samples • Contrastive learning has achieved preeminent success in from an anchor classification tasks SupCon • However, fairness in terms of sensitive attribute (e.g., gender and race) has been underexplored in previous **Positive samples** works - Same target classes with the anchor Negative samples • We prove that the state-of-the art contrastive learning - Different target classes from the anchor method (SupCon) has two factors causing unfairness - Same/different sensitive attributes from - Learning unwanted sensitive attribute information the anchor - Data imbalance between demographic groups Learning not only target class but • Fair Supervised Contrastive Loss (FSCL) prevents sensitive attribute information encoding networks from learning sensitive attribute Data imbalance incurs the group-wi information and inter-class separability

- Group-wise normalization mitigates the group-wise disparities due to data imbalance

Method	T=a	/ S=m	T=a	/ S=y	Т= <i>b</i> /	/ S=m	T=b	/ S=y
	EO	Acc.	EO	Acc.	EO	Acc.	 EO	Acc.
CE [15]	27.8	79.6	16.8	79.8	17.6	84.0	14.7	84.5
GRL [38]	24.9	77.2	14.7	74.6	14.0	82.5	10.0	83.3
LNL [26]	21.8	79.9	13.7	74.3	10.7	82.3	6.8	82.3
FD-VAE [37]	15.1	76.9	14.8	77.5	11.2	81.6	6.7	81.7
MFD [22]	7.4	78.0	14.9	80.0	7.3	78.0	5.4	78.0
SupCon [25]	30.5	80.5	21.7	80.1	20.7	84.6	16.9	84.4
FSCL	11.5	79.1	13.0	79.1	7.0	82.1	6.4	83.8
FSCL+	6.5	79.1	12.4	79.1	4.7	82.9	4.8	84.1

Classification results on CelebA

Fair Contrastive Learning for Facial Attribute Classification

Jewook Lee¹ Pilhyeon Lee¹ Sunhee Hwang² Dohyung Kim³ Sungho Park¹ Hyeran Byun¹ ¹Yonsei University ²LG Uplus ³SK Inc.

and positive samples between groups

Experiment

Effectiveness of group-wise normalization

Method

	Positive samples		
	- Same target classes with the anchor		
	Negative samples		
	- Different target classes from the anchor		
	 Same sensitive attributes from the anchor 		Ň
	Learning only target class information	• \ i	
S	e disparities of intra-group compactness	•	V

Group-wise normalization solves them by normalizing the number of anchors

Efficiency in semi-supervised settings

Method	# of Sensitive	Pseudo-labeling	EO (↓)	Acc. (†)
SupCon [25]	0	-	$30.5_{\pm 1.3}$	$80.5_{\pm 0.5}$
<i>SupCon</i> [25] + <i>GRL</i> [38]	1	-	$21.0_{\pm 0.5}$	$76.6_{\pm 0.3}$
	1	-	$6.5_{\pm 0.4}$	79.1 ±0.1
	1/2	X V	$\begin{array}{c} 13.4_{\pm 0.1} \\ 12.8_{\pm 1.2} \end{array}$	$79.3_{\pm 0.3}$ $79.4_{\pm 0.3}$
FSCL+	1/4	X V	$\frac{18.7_{\pm 0.3}}{13.4_{\pm 0.1}}$	$80.0_{\pm 0.3}$ $79.5_{\pm 0.3}$
	1/10	X V	$20.7_{\pm 0.5} \\ 16.5_{\pm 0.5}$	$80.2_{\pm 0.2}$ 79.6 $_{\pm 0.4}$
	1/20	×	$23.4_{\pm 0.0}$ $18.8_{\pm 1.1}$	$80.6_{\pm 0.1}$ $78.5_{\pm 0.4}$

Conclusion

We analyzed the causative factors of unfairness in contrastive learning

We proposed a fair contrastive loss (FSCL) and group-wise normalization solving the causes Our method achieves the best trade-off

performance and works efficiently in various challenging environments