

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization

Oral presentation, ICCV 2021

Pilhyeon Lee
Ph.D. student

Hyeran Byun
Professor

Temporal Action Localization

Goal: to predict the temporal intervals of action instances.

Temporal Action Localization

Despite its great importance in video understanding, the heavy annotation cost limits its scalability.

(e.g., it takes 300 sec to annotate a 1-min video)

Video-level: BaseballPitch

The cheapest one is in the video-level, which indicates the presence (absence) of action classes. It takes 45 *sec* per 1-min video.

Video-level: BaseballPitch

Unfortunately, there is no free lunch. The *cheaper* the annotation is, the *poorer* the model performs.

E.g., Bottom-Up_[ECCV'20] 45.4% *vs.* EM-MIL_[ECCV'20] 30.5% (mAP@IoU=0.5)

Point-level (or single-frame) supervision has been proposed to bridge the gap.

It avoids the rewind stage, and therefore has a comparable cost, e.g., 45 sec vs. 50 sec. Meanwhile, it offers far richer information, e.g., action count and rough action locations.

Challenges of Prior Arts

Previous methods simply learn from video- and point-level supervision.

Challenges of Prior Arts

Ground-truth

Prediction

While point-level supervision helps the models to spot action instances (low IoUs), they fail to learn *action completeness* due to the discontiguous property of points.

Challenges of Prior Arts

Ground-truth

Prediction

While point-level supervision helps the models to spot action instances (low IoUs), they fail to learn *action completeness* due to the discontiguous property of points.

→ We propose to explicitly learn action completeness from points.

Our idea is simple.

If continuity is the key, why don't we generate dense pseudo labels that can provide *completeness guidance* for the model?

There remain two questions.

- 1 How can we obtain the sequence that best suits the (unknown) ground truth?
- 2 How can we effectively lead the model to learn action completeness?

1 How can we obtain the sequence that best suits the (unknown) ground truth?

1 How can we obtain the sequence that best suits the (unknown) ground truth?

Underestimation (*low* contrast)

1 How can we obtain the sequence that best suits the (unknown) ground truth?

1 How can we obtain the sequence that best suits the (unknown) ground truth?

1 How can we obtain the sequence that best suits the (unknown) ground truth?

$$\mathcal{R}(\pi_c) = \frac{1}{N_c} \sum_{n=1}^{N_c} \left(\underbrace{\frac{1}{l_n^c} \sum_{t=s_n^c}^{e_n^c} u_n^c(t)}_{\text{Inner score}} - \underbrace{\frac{1}{\left\lceil \delta l_n^c \right\rceil + \left\lfloor \delta l_n^c \right\rfloor} \left(\sum_{t=s_n^c - \left\lceil \delta l_n^c \right\rceil}^{s_n^c - 1} u_n^c(t) + \sum_{t=e_n^c + 1}^{e_n^c + \left\lfloor \delta l_n^c \right\rfloor} u_n^c(t) \right) \right),$$

$$\text{Where } u_n^c(t) = \begin{cases} \hat{p}_t[c], & \text{if } z_n^c = 1. \\ 1 - \hat{p}_t[c], & \text{otherwise.} \end{cases},$$

Our goal is to search for the optimal sequence: $\pi_c^* = \arg \max_{\pi_c} \mathcal{R}(\pi_c)$

2 How can we effectively lead the model to learn action completeness?

We encourage the model to contrast action instances from their surrounding backgrounds.

2 How can we effectively lead the model to learn action completeness?

This instance-level contrastive strategy brings two advantages simultaneously, i.e., intra-action compactness and action-background separation.

2 How can we effectively lead the model to learn action completeness?

1) Score contrastive loss

$$\mathcal{L}_{\text{score}} = \frac{1}{\sum_{c=1}^{C} y^{\text{vid}}[c]} \sum_{c=1}^{C} y^{\text{vid}}[c] \left(1 - \mathcal{R}(\pi_c^*)\right)^{\beta}$$

2) Feature contrastive loss

$$\mathcal{L}_{\text{feat}} = \frac{1}{\sum_{c=1}^{C} \mathbb{1}\left[\sum_{n=1}^{N_c} z_n^c > 1\right]} \sum_{c=1}^{C} \mathbb{1}\left[\sum_{n=1}^{N_c} z_n^c > 1\right] \ell_{\text{feat}}^c,$$

$$\text{where } \ell_{\text{feat}}^c = -\frac{1}{\sum_{n=1}^{N_c} z_n^c} \sum_{n=1}^{N_c} z_n^c \log \frac{\sum_{\forall o \neq n} z_o^c \exp(\bar{f}_n^c \cdot \bar{f}_o^c / \tau)}{\sum_{\forall m \neq n} \exp(\bar{f}_n^c \cdot \bar{f}_m^c / \tau)},$$

: Action instance features

: Background instance features

: Push each other

→ ←: Pull each other

Analysis

Cooring mathed	Sequence	mAP@	AP@IoU (%)				
Scoring method	accuracy	0.1	0.3	0.5	0.7	AVG	
Baseline	N/A	70.7	58.1	40.7	16.1	47.3	
(a) Inner scores	74.0	74.7	61.4	40.9	15.2	49.0	
(b) Contrast-act	80.1	74.3	63.3	43.6	19.5	50.8	
(c) Contrast-both	83.9	75.7	64.6	45.3	21.8	52.8	

Comparison of scoring variants

How well does the score contrast represent the action completeness?

Analysis

C	С С	C	mAP@IoU (%) 0.1 0.3 0.5 0.7				AVIC	
Lvideo	$\mathcal{L}_{ ext{point}}$	$\mathcal{L}_{ ext{score}}$	L _{feat}	0.1	0.3	0.5	0.7	AVG
√	Х	Х	Х	51.9	37.1	20.3	6.0	28.7
✓	✓	X	X				16.1	47.3
✓	✓	✓	Х	75.1	64.4	44.5	20.0	52.0
✓	✓	X		72.1	60.5		17.9	49.0
✓	✓	✓	✓	75.7	64.6	45.3	21.8	52.8

Effect of each completeness guidance

Method	Distribution	Sequence	mA)	AVG		
	Distribution	accuracy	0.3	0.5	0.7	AVO
	Manual	N/A	53.3	28.8	9.7	40.6
SF-Net [35]	Uniform	N/A	52.0	30.2	11.8	40.5
	Gaussian	N/A	47.4	26.2	9.1	36.7
	Manual	N/A	58.1	34.5	11.9	44.3
Ju <i>et al</i> . [14]	Uniform	N/A	55.6	32.3	12.3	42.9
	Gaussian	N/A	58.2	35.9	12.8	44.8
Ours	Manual	83.7	63.3	43.9	20.8	51.7
	Uniform	76.6	60.4	42.6	20.2	49.3
	Gaussian	83.9	64.6	45.3	21.8	52.8

Comparison of different label distributions

The action completeness learning indeed helps the model to localize more comprehensive action instances regardless of the point distributions.

State-of-the-art Comparison

Cunamisian	Mathad			mA]	P@IoU	(%)			AVG	AVG
Supervision	Method	0.1	0.2	0.3	0.4	0.5	0.6	0.7	(0.1:0.5)	(0.3:0.7)
	BMN [26]	-	-	56.0	47.4	38.8	29.7	20.5	-	38.5
Frame-level	P-GCN [67]	69.5	67.8	63.6	57.8	49.1	-	-	61.6	-
(Full)	G-TAD [61]	-	-	54.5	47.6	40.2	30.8	23.4	-	39.3
(Full)	BC-GNN [1]	-	-	57.1	49.1	40.4	31.2	23.1	-	40.2
	Zhao <i>et al</i> . [71]	-	-	53.9	50.7	45.4	38.0	28.5	-	43.3
	Lee et al. [22]	67.5	61.2	52.3	43.4	33.7	22.9	12.1	51.6	32.9
Video-level	CoLA [69]	66.2	59.5	51.5	41.9	32.2	22.0	13.1	50.3	32.1
(Weak)	AUMN [33]	66.2	61.9	54.9	44.4	33.3	20.5	9.0	52.1	32.4
(Weak)	TS-PCA [30]	67.6	61.1	53.4	43.4	34.3	24.7	13.7	52.0	33.9
	UGCT [64]	69.2	62.9	55.5	46.5	35.9	23.8	11.4	54.0	34.6
	SF-Net [†] [35]	71.0	63.4	53.2	40.7	29.3	18.4	9.6	51.5	30.2
	Ju et al.† [14]	72.8	64.9	58.1	46.4	34.5	21.8	11.9	55.3	34.5
Point-level	Ours [†]	75.1	70.5	63.3	55.2	43.9	33.3	20.8	61.6	43.3
(Weak)	Moltisanti et al. [‡] [42]	24.3	19.9	15.9	12.5	9.0	-	-	16.3	-
	SF-Net [‡] [35]	68.3	62.3	52.8	42.2	30.5	20.6	12.0	51.2	31.6
	Ju et al. [‡] [14]	72.3	64.7	58.2	47.1	35.9	23.0	12.8	55.6	35.4
	Ours [‡]	75.7	71.4	64.6	56.5	45.3	34.5	21.8	62.7	44.5

Results on THUMOS'14

State-of-the-art Comparison

Dataset	Method	1	mAP@IoU (%)					
Dataset	Method	0.1	0.3	0.5	0.7	AVG		
	SF-Net [35]	58.0	37.9	19.3	11.9	31.0		
	SF-Net* [35]	52.9	37.6	21.7	13.7	31.1		
GTEA	Ju <i>et al</i> . [14]	59.7	38.3	21.9	18.1	33.7		
	Li <i>et al</i> . [24]	60.2	44.7	28.8	12.2	36.4		
	Ours	63.9	55.7	33.9	20.8	43.5		
	SF-Net [35]	62.9	40.6	16.7	3.5	30.9		
	SF-Net* [35]	64.6	42.2	27.3	12.2	36.5		
BEOID	Ju <i>et al</i> . [14]	63.2	46.8	20.9	5.8	34.9		
	Li <i>et al</i> . [24]	71.5	40.3	20.3	5.5	34.4		
	Ours	76.9	61.4	42.7	25.1	51.8		

Results on GTEA & BEOID

Supervision	Method	mAl 0.5	P@IoU 0.75	(%) 0.95	AVG
Frame-level	SSN [72]	41.3	27.0	6.1	26.6
Video-level	Lee et al. [22] AUMN [33] UGCT [64] CoLA [69]	41.2 42.0 41.8 42.7	25.6 25.0 25.3 25.7	6.0 5.6 5.9 5.8	25.9 25.5 25.8 26.1
Point-level	SF-Net [35] Ours	37.8 44.0	26.0	5.9	22.8 26.8

Results on ActivityNet1.2

Supervision	Method	mA	mAP@IoU (%)				
Supervision	Method	0.5	0.75	0.95	AVG		
	BMN [26]	50.1	34.8	8.3	33.9		
	P-GCN [67]	48.3	33.2	3.3	31.1		
Frame-level	G-TAD [61]	50.4	34.6	9.0	34.1		
	BC-GNN [1]	50.6	34.8	9.4	34.2		
	Zhao <i>et al</i> . [71]	43.5	33.9	9.2	30.1		
	Lee et al. [22]	37.0	23.9	5.7	23.7		
Video-level	AUMN [33]	38.3	23.5	5.2	23.5		
	TS-PCA [64]	37.4	23.5	5.9	23.7		
Point-level	Ours	40.4	24.6	5.7	25.1		

Results on ActivityNet1.3

Optimal Sequence Visualization

An example of CleanAndJerk action

An example of SocckerPenalty action

time

(a) An example of *Diving* action (video_test_0001309)

time

(b) An example of *CleanAndJerk* action (video_test_000058)

Thank you!

Contact: lph1114@yonsei.ac.kr

