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Temporal Action Localization

BaseballPitch "l BaseballPitch
(0'49" ~0'53") (1'59" ~2'03")

Goal: to predict the temporal intervals of action instances.



Temporal Action Localization

BaseballPitch "l BaseballPitch
(0'49" ~0'53") (1'59" ~2'03")

Despite its great importance in video understanding, the heavy
annotation cost limits its scalability.
(e.g., it takes 300 sec to annotate a 1-min video)



To bypass the high labeling cost, we focus on weak supervision.



Weakly-supervised Temporal Action Localization

Video-level: BaseballPitch

The cheapest one is in the video-level, which indicates the presence (absence)
of action classes. It takes 45 sec per 1-min video.



Weakly-supervised Temporal Action Localization

Video-level: BaseballPitch

Unfortunately, there is no free lunch.
The cheaper the annotation is, the poorer the model performs.

E.g., Bottom-Up cccyra0 43-4% vs. EM-MILgccyrp0 30.5%
(mAP@1oU=0.5)



Weakly-supervised Temporal Action Localization

BaseballPitch BaseballPitch
(0! 52") (2' 0")

Point-level (or single-frame) supervision has been proposed to bridge the gap.



Weakly-supervised Temporal Action Localization

BaseballPitch BaseballPitch
(0! 52") (2' 0")

It avoids the rewind stage, and therefore has a comparable cost, e.g., 45 sec vs. 50 sec.
Meanwhile, it offers far richer information, e.g., action count and rough action locations.



Challenges of Prior Arts

Signals from video-level labels
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Signals from point-level labels

Previous methods simply learn from video- and point-level supervision.



Challenges of Prior Arts

Ground-truth
T
Prediction

While point-level supervision helps the models to spot action instances (low loUs),
they fail to learn action completeness due to the discontiguous property of points.



Challenges of Prior Arts

Ground-truth
T
Prediction

While point-level supervision helps the models to spot action instances (low loUs),
they fail to learn action completeness due to the discontiguous property of points.

=2 We propose to explicitly learn action completeness from points.



Our idea is simple.



If continuity is the key, why don’t we generate dense pseudo labels
that can provide completeness guidance for the model?
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There remain two questions.
@D How can we obtain the sequence that best suits the (unknown) ground truth?
2 How can we effectively lead the model to learn action completeness?



How can we obtain the sequence that best suits the (unknown) ground truth?



Method

(D How can we obtain the sequence that best suits the (unknown) ground truth?

We utilize the score contrast between inner and outer regions ( — )
as a proxy to judge the degree of action completeness for a predicted instance.



Method

(D How can we obtain the sequence that best suits the (unknown) ground truth?

Clean-and-Jerk

Underestimation
(low contrast)

We utilize the score contrast between inner and outer regions ( — )
as a proxy to judge the degree of action completeness for a predicted instance.



Method

(D How can we obtain the sequence that best suits the (unknown) ground truth?

Clean-and-Jerk Clean-and-Jerk
Underestimation Overestimation
(low contrast) (low contrast)
We utilize the score contrast between inner and outer regions ( — )

as a proxy to judge the degree of action completeness for a predicted instance.



Method

(D How can we obtain the sequence that best suits the (unknown) ground truth?

Clean-and-Jerk Clean-and-Jerk Clean-and-Jerk
Underestimation Overestimation Best fit
(low contrast) (low contrast) (high contrast)
We utilize the score contrast between inner and outer regions ( — )

as a proxy to judge the degree of action completeness for a predicted instance.



Method

(D How can we obtain the sequence that best suits the (unknown) ground truth?
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Our goal is to search for the optimal sequence: 7

= argmax, R(m)



How can we effectively lead the model to learn action completeness?



Method

2 How can we effectively lead the model to learn action completeness?

CleanAndJerk

We encourage the model to contrast action instances from their surrounding backgrounds.



Method

2 How can we effectively lead the model to learn action completeness?

This instance-level contrastive strategy brings two advantages simultaneously,
i.e., intra-action compactness and action-background separation.



Method

2 How can we effectively lead the model to learn action completeness?

1) Score contrastive loss
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Analysis

0.9
. Sequence mAP@IoU (%)
: 06 Scoring method accuracy 0.1 0.3 0.5 0.7 AVG
- | _—
2 2 Baseline | N/A | 707 58.1 407 16.1 | 473
0.3 (a) Inner scores 74.0 7477 614 409 152 | 49.0
(b) Contrast-act 80.1 743 633 436 195 | 508
; 0.0 i (c) Contrast-both 83.9 757 o64.6 453 21.8 | 52.8
0.0 0.3 0.6 0.9 -0.6 -0.3 0.0 0.3 0.6

Inner score Score contrast Comparison of scoring variants
inner score vs. score contrast

How well does the score contrast represent the action completeness?



Analysis

‘ _ mAP@IoU (%)

ﬁwdco ﬁpmm ﬁscorc Efcat 0.1 0.3 0.5 0.7 AVG
v X X X 519 37.1 203 6.0 | 28.7
v v X X 70.7 58.1 40.7 16.1 | 473
v v v/ X 75.1 644 445 20.0 | 520
v v X v | 72,1 605 421 179 | 490
v v v v 75.7 64.6 453 21.8 | 52.8

Effect of each completeness guidance

o Sequence mAP@IoU (%)
Method Distribution accuracy 03 0.5 0.7 AVG
Manual N/A 533 288 97 | 40.6
SE-Net [35] Uniform N/A 52.0 302 11.8 | 40.5
Gaussian N/A 474 262 9.1 36.7
Manual N/A 58.1 345 119 | 443
Juetal [14] Uniform N/A 55.6 323 123 | 429
Gaussian N/A 582 359 128 | 448
Manual 83.7 63.3 439 208 | 51.7
Ours Uniform 76.6 60.4 426 202 | 493
Gaussian 83.9 64.6 453 218 | 52.8

Comparison of different label distributions

The action completeness learning indeed helps the model to localize more

comprehensive action instances regardless of the point distributions.



State-of-the-art Comparison

Supervision Method mAP@IoU (%) AVG AVG
0r 02 03 04 05 06 07 | (0.1:05) (0.3:0.7)
BMN [26] - - 56.0 474 388 297 205 - 38.5
Frame-level P-GCN [67] 69.5 67.8 63.6 57.8 49.1 - - 61.6 -
(Full) G-TAD [61] - - 545 476 402 308 234 - 39.3
BC-GNN [ 1] - - 57.1 49.1 404 312 23.1 - 40.2
Zhaoetal. [71] - - 539 50.7 454 38.0 285 - 433
Leeetal [27] 67.5 612 523 434 337 229 12.1 51.6 329
. CoLA [6Y] 66.2 595 515 419 322 220 13.1 50.3 32.1
Video-level
(Weak) AUMN [37] 66.2 619 549 444 333 205 9.0 52.1 324
TS-PCA [30] 67.6 61.1 534 434 343 247 13.7 52.0 339
UGCT [o4] 69.2 629 555 465 359 238 114 54.0 34.6
SF-Net' [35] 71.0 634 532 40.7 293 184 9.6 51.5 30.2
Juetal'[14] 72.8 649 58.1 464 345 218 119 55.3 34.5
. Ours'! 75.1 70.5 633 552 439 333 208 61.6 43.3
Point-level :
(Weak) Moltisanti et al.* [47] | 243 199 159 125 9.0 - - 16.3 -
SF-Net# [35] 68.3 623 528 422 305 206 120 51.2 31.6
Juetal*[14] 72.3 647 582 4711 359 230 128 55.6 354
Ours* 75.7 714 64.6 56.5 453 345 218 62.7 44.5

Results on THUMOS' 14



State-of-the-art Comparison

mAP@IoU (%)
Dataset Method 0.1 03 05 0.7 AVG
SF-Net [ 5] 58.0 379 193 119 | 31.0
SE-Net* [35] | 529 376 21.7 13.7 | 31.1
GTEA Juetal [14] | 59.7 383 21.9 18.1 | 33.7
Lietal [24] | 60.2 447 28.8 122 | 364
Ours 639 557 339 208 | 43.5
SF-Net [25] 629 406 167 3.5 30.9
SF-Net* [35] | 64.6 422 273 122 | 36.5
BEOID Juetal [14] | 63.2 468 209 58 | 349
Lietal [24] | 71.5 403 203 5.5 344
Ours 769 614 427 25.1 | 51.8

Results on GTEA & BEOID

- mAP@IoU (%)
Supervision Method 05 075 0095 AVG
Frame-level | SSN [72] ‘ 413 270 6.1 26.6

Leeeral. [22] | 412 256 6.0 | 259
Videolevel AUMN [27] 420 250 56 | 255
T ugeT [04] | 418 253 59 | 258
CoLA [6Y] 427 257 58 | 26.1
Point_level SF-Net [ 5] 37.8 - - 22.8
Ours 440 26.0 59 | 26.8

Results on ActivityNet1.2

.. mAP@IoU (%)

Supervision Method 05 075 095 AVG
BMN [26] 50.1 348 83 | 339
P-GCN [67] 483 332 33 | 31.1
Frame-level | G-TAD [61] 504 346 90 | 34.1
BC-GNN [ 1] 506 348 94 | 342
Zhaoetal . [71] | 43.5 339 92 | 30.1
Lee et al. [27] 37.0 239 5.7 | 23.7
Video-level | AUMN [*7] 383 235 52 | 235
TS-PCA [64] 374 235 59 | 237
Point-level | Ours ‘ 404 246 5.7 | 25.1

Results on ActivityNet1.3



Optimal Sequence Visualization
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Qualitative Comparison
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An example of CleanAndJerk action



Qualitative Comparison

final score
(SF-Net [35])
detection
(SF-Net [35])
final score
(Ours)
detection
(Ours)

GT

time

An example of SocckerPenalty action



Qualitative Comparison
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(a) An example of Diving action (video test 0001309)



Qualitative Comparison
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(b) An example of CleanAndJerk action (video test 000058)
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